Ultrasound 101

Matthew Reeves, MD, MPH
Mary Fjerstad, NP, MHS
September 20, 2012

Objectives
- Understand basis physics of ultrasound
- How to apply principles
- Assessment of early pregnancy
 - Gestational age determination
- Appearance of intrauterine devices
- Endometrium after spontaneous & induced abortion

Second Trimester Ultrasound

Principles of Ultrasound
- "Ultrasound"
 - Hertz = cycles/second
 - High Frequency Sound Waves
 - Greater than 20,000 Hz, the limit of human hearing
- 2MHz to 12 MHz for medical applications
 - Abdominal probes usually 3-5 MHz
 - Vaginal probes usually 5-10 MHz
 - Linear probes usually 8-12 MHz (Implanon)

BASICS OF ULTRASOUND PHYSICS

How Ultrasound Works
- Piezoelectric crystals convert electricity to mechanical energy and vice versa
 - Used in guitar pickups
 - Stereo speakers
 - Scales
 - Detonators
- Crystals convert electricity into sounds
- Then crystal converts sound back into an electric signal
- The computer calculates the time

How sounds travels: Interfaces
- Interfaces reflect sounds waves
- Greater density change = greater reflection
How sounds travels: Reflections
- The probe only receives what is reflected back to it
- But is shown in cross-section
 - Whereas a camera sees a “3-D reconstruction”
- A structure at a right angle to the sound waves will reflect more sound than the same structure at any other angle.

How sound travels: Water
- “Increased Through-Transmission”
 - Image appears brighter on far side of water-filled structures
 - More sound waves reach the far side
 - Because none are reflected by the water

Water vs. Air
- Water transmits sound much better than air
- Full bladder pushes bowel gas out of the way
 - So that the pelvic organs can be seen more clearly

Cyst: Ultrasound::Bubble:Light
- Effect is related to size
 - Large bubbles transmit light just as large cysts transmit sound
 - No interference → no reflection
 - Increased through transmission
 - Small adjacent bubbles (aka foam) creates multiple interfaces that disrupts light transmission
 - Same with small cysts, as seen in a molar pregnancy
 - Reflective=Echogenic
Cyst: Ultrasound: Bubble: Light

- Small adjacent bubbles (aka foam) creates multiple interfaces that disrupts light transmission
- But still has increased through transmission

Principles of Ultrasound Resolution

- Resolution proportionate to frequency
- Vaginal probe gives better images due to higher frequency
- This is possible due to the shorter distance to the pelvic organs

Transabdominal

- Best for second and third trimester obstetric sonography
- For gynecologic or first trimester sonography:
 - Full bladder
 - Stay as close to the symphysis as possible
- Try to avoid scars or the umbilicus

Transabdominal Probe

- All probes have a line or notch that marks the “top” of the probe
- Keep the line towards the patient’s head or right
 - This will keep your images oriented properly
 - And keep you oriented!

Transabdominal: Longitudinal Views

- Head to right; Feet to left
- Abdominal wall on top

Transabdominal: Transverse Views

- Right to right & Left to left
- If you keep notch on probe to the right!
- Abdominal wall on top
Transvaginal: Longitudinal Views

- Head down; Feet up
- Abdominal wall on right; Rectum to left
- Must “rotate” your mind

Transvaginal Ultrasound

- Orientation is very different: Rotated 90 degrees
- Anatomy is much more apparent

Transvaginal Probe

- Like abdominal probes, all vaginal probes have a line or notch that marks the “top” of the probe
- Keep the line facing up or to the patient’s head or right
 - This will keep your images oriented properly and keep you oriented

Advantages of Transvaginal

- Best for gynecologic or first trimester sonography
 - Probe is very close to uterus and ovaries

Transvaginal: Better with empty bladder

- A full bladder pushes uterus and ovaries away from the probe
- Creates artifactual distortion of image

Maximize your image settings

- Image size is the simplest to fix
 - Make it easier for you and your colleagues to see
 - Good: fills the screen/paper
 - Don’t waste space
Contraindications to Transvaginal Ultrasound

- Same as for a speculum exam
- Generally gentler to cervix than digital or speculum
 - You can watch as you approach the cervix
 - No metal

M Mode

- Used to document fetal heart motion
 - Good for when you want proof of heart motion in chart
 - Or proof of absence of heart motion

M-mode

First Trimester Ultrasound: Goals (in order of importance)

- Rule in intrauterine pregnancy
 - Rule out ectopic
- Confirm normal pregnancy
 - Cardiac motion
 - Number of fetuses
- Date pregnancy
- Other
 - Evaluate adnexae
 - Assess free fluid in cul-de-sac

Ultrasound 101

FIRST-TRI MESTER SONOGRAM

Transabdominal Anatomy in the Sagittal Plane

- Long Uterus view
 - “The papaya view”
- Confirms an intrauterine gestation
 - The pregnancy is seen to be connected to the cervix
 - Therefore not extrauterine
First Trimester Scan: Transvaginal

- Move probe side to side
- Freeze at the best view of the pregnancy
- Measure the sac or a CRL

Transverse Transabdominal

- Then look in transverse plane
- Gestational sac should be surrounded by myometrium
- Look left and right into the adnexae
 - Checking for large masses
- Measure a CRL if possible

Transvaginal Transverse and Adnexa

- Look at the uterus in the transverse view
 - Turn the probe counterclockwise in the right
 - So the notch faces right
- Look for ovaries
 - The more that you look, the better you will get!

Ruling Out Ectopic

The Papaya View

- One image of the uterus longitudinally can effectively rule out ectopic
 - With gestational sac seen in fundus
 - In line with the cervix
 - Rules out free fluid

Gestational Landmarks: The Double Decidual Sign

- It is the two decidual layers opposing each other
-Appears as soon as a sac is visible

Gestational Landmarks: The Yolk Sac

- First structure to appear within gestational sac
 - Should be seen when MSD = 8mm
 - Pregnancy is abnormal if not seen by 13mm
 - This definitively diagnoses an intrauterine pregnancy
Gestational Landmarks:

Fetal Pole
- Fetal pole should be seen by MSD = 20 mm

Cardiac activity
- Fetal pole should be seen by MSD = 20 mm
- Cardiac activity should be visible by 5 mm CRL
 - This is always abnormal
 - It is usually visible by 3-4 mm

The Amnion
- Surrounds the embryonic pole
- Not usually seen until after about 8 weeks GA
 - Before 8 weeks, the amnion is not normally visible
- The embryo should almost fill the amnion

Mean Sac Diameter
- Measure diameter in 2 dimensions on a long (sagittal) view
- Then measure a third diameter on a transverse view
- Average the 3 measurements to get the MSD
 - For some purposes, the average of two measurements is enough (such as dating for abortions)
- GA (days) = MSD (mm) + 30 (Rossavik formula)

Is 2 dimensions OK?
- Accuracy slightly decreased
 - But 3rd dimension would rarely change GA by more than 3 days
- But transverse good for documentation
 - Proves that you looked
 - Worth printing even if you don’t measure the sac

GA (days) = MSD (mm) + 30
GA (days) = (15 + 11)/2 + 30 = 43

Crown-Rump Length
- Measure the maximum mid-sagittal length of the fetal pole
- Goldstein formula:
 - GA(days) × CRL(mm) + 42
 - Can be used up to 9 weeks
 - CRL is preferred over the MSD
 - Don’t use the MSD for dating once you can measure the CRL
 - CRL is the best measurement from 6.5 to 12 weeks
 - and can be used up to 14 weeks
Calculations

- Let your machine do the work
- Otherwise:
 - Crown-rump length: \(\text{GA (days)} = \text{CRL (mm)} + 42 \)
 - Mean Sac Diameter: \(\text{GA (days)} = \text{MSD (mm)} + 30 \)

Determining Gestational Age

- The earlier the sono is the better!
- Roughly an 8% error in GA determination
 - At 5 weeks, 8% is 4 days
 - At 10 weeks, 8% is 8 days
- Obtain Mean Sac Diameter (MSD) until embryo appears
- Then use Crown-Rump Length (CRL) until 12-13 weeks

How errors affect GA calculation

5mm embryo
- \(\text{GA} = 42 + 5 = 6\text{w }5\text{d} \)
- If mismeasured: CRL = 3
 - \(\text{GA} = 42 + 3 = 6\text{w }3\text{d} \)
 - If CRL = 8
 - \(\text{GA} = 42 + 8 = 7\text{w }1\text{d} \)
- Not very different!

Early pregnancy by weeks

- Sequentially review timing of events and findings

4.5 Week Pregnancy

- Very small sac within one layer of the decidua
- No embryonic structures

5 Week Pregnancy

- Clear double decidual sign
- May see Yolk sac (not in this example)
5.5 week Pregnancy

- Yolk sac appears
- Prominent double decidual sign

6 Week Pregnancy

- Embryonic pole visible
- Yolk sac and double decidual sign still present

6.5 Week Pregnancy

- Embryonic pole visible
- Yolk sac and double decidual sign still present

6.5 Week Pregnancy

- Embryonic pole visible
- Yolk sac and double decidual sign still present

Cardiac motion with CRL=3mm

7 Week Pregnancy

- Embryo often visible transabdominally
- Amion may be visible
8 Week Pregnancy

- Anatomy becomes more apparent
- Head and limbs are identifiable
- Amnion usually visible

9 Week Pregnancy

10 Week Pregnancy

- CRL usually can be measured transabdominally in most women

12 Week Pregnancy

- Beyond 13 weeks, a BPD should be obtained as well

Ultrasound 101

MULTIPLE GESTATIONS
Twins in the First Trimester

- This is the best time to diagnose twins
- Easiest to determine chorionicity

Monochorionic Twins

- One gestational sac
- Two amnions, yolk sacs, & embryos

Dichorionic Twins

- Two gestational sacs (chorion)
- Two amnions
- Two yolk sacs
- Two embryos

Twins: Chorionicity?

Chorionicity?
Maternal Deaths in the United States, 1991-99

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Risk of Death (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Abortion</td>
<td>0.567</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>1.5</td>
</tr>
<tr>
<td>Live Birth</td>
<td>1.9</td>
</tr>
<tr>
<td>Ectopic (operative)</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Source: Reference 14

Pseudosac

- The endometrium can resemble a gestational sac
 - But will never have a yolk sac

Free Fluid in the pelvis

- Blood seen in cul de sac
 - May be anechoic or contain echoes (clot)
- Raises concern for ectopic substantially
 - Not seen with all ectopics but uncommon with IUPs
 - This is an easy finding to identify (compared to funding the ectopic pregnancy)

Echogenic free fluid

- Free fluid in the pelvis
 - Blood seen in cul de sac
 - May be anechoic or contain echoes (clot)
 - Raises concern for ectopic substantially
 - Not seen with all ectopics but uncommon with IUPs
 - This is an easy finding to identify (compared to funding the ectopic pregnancy)
Ultrasound 101

CESAREAN SCAR ECTOPIC PREGNANCY

Cesarean Scar
- Gestational sac implants within prior cesarean scar

Doppler to verify anterior implantation

Distance to bladder

Development into accreta
Cannula in uterus

Cesarean scar implantation

The endomtrium with Cesarean scar pregnancy

Ultrasound 101

CORNUAL ECTOPIC PREGNANCY

First image: Cul de sac

Cornual ectopic

Endometrium points to pregnancy
Cornual Ectopic, 12 weeks

Cornual ectopic, 6.5 wks

Cornual ectopic, 6.5 wks

Ultrasound 101

INTRAUTERINE DEVICES ON ULTRASOUND

Paragard

Paragard

End of Copper

End of Copper

Very echogenic
Paragard in retroverted uterus

Mirena
- Not very echogenic except where perpendicular to the probe
- Strings may be as echogenic as the IUD

Mirena on ultrasound

Pronounced shadowing with Mirena
- On some machines, the Mirena shadows more than others

Mirena on an older machine
- This is a scanned image from an old GE machine

Mirena can be hard to find
Mirena in the cervix

The echogenic tip of the Mirena is the easiest part to see.

The body of the Mirena is identifiable only by the presence of shadowing beneath it.

Post-Abortal Insertion of Mirena

- The echogenic tip of the Mirena is the easiest part to see.
- The body of the Mirena is identifiable only by the presence of shadowing beneath it.

Mirena in cervix

Mirena in a retroverted uterus

Post-placental Mirena Insertion
Summary

- Understanding ultrasound physics aids in interpretation of unusual findings
- Gestational age is best estimated with MSD then CRL in the first trimester
- Signs of ectopic pregnancy are important to recognize
 - More than identifying the ectopic
 - Technique is key to visualizing IUDs

Thank you

Questions